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aUniversity of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana,
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Abstract

Computational simulations of a multibody dynamic response are an important
tool for the analysis and design of various mechanical systems. While the gov-
erning dynamic equations of these systems are well known, the identification
of model parameters, especially those associated with joints, can prove difficult
and time consuming. Traditionally, experimental methods are used to deduce
the physical joint parameters by isolating the joint from the rest of the structure
and testing it under static or dynamic loads. An alternative to pure experimen-
tal joint-parameter identification is the model-based methods, which rely on
finding such parameter values that the predicted dynamic response coincides
with that of the real system. As the equations of multibody systems are highly
nonlinear, linearization techniques are applied to efficiently deduce the system’s
dynamic parameters using modal analysis. Although significant progress has
been made in recent years, none of the studies that propose the linearization
technique has addressed the effect of multibody system equilibrium-point se-
lection on the accuracy of the parameter-identification procedure. Therefore,
here, a new general model-based parameter-estimation method is proposed that
minimizes the difference between the experimentally and numerically obtained
dynamic system’s natural frequencies. The basic idea of the proposed method
relies on the development of an algorithm that identifies the optimal equilibrium
point of the linearization for a given multibody system. The equilibrium point
is deduced in such a way as to minimize the interplay between the different joint
parameters on the system’s natural frequencies. Using the proposed approach it
is possible to localize the influence of the individual joint’s stiffness parameters
to one particular natural frequency. The presented case study highlights the
efficiency of the developed parameter-estimation procedure and with this the
importance of a proper linearization equilibrium-point selection for a reliable
and accurate parameter-identification process.
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1. Introduction

Due to advancements in the power of computers, computational simulations
of a multibody system’s dynamic response have become an important tool for
the design and analysis of physical systems. Real mechanical systems usually
consist of many components that are connected together though various joints.5

The mathematical formulations governing the dynamics of a multibody system
are generally known and can be obtained from numeric or symbolic algorithms
[1]. Although the governing equations are well defined, the modeling of such
systems still represents a challenge due to the uncertainty in the system’s pa-
rameters, especially those associated with the joints. The identification of a10

joint’s stiffness and damping properties [2, 3, 4] is therefore of great importance
for the development of validated numerical models.
Traditional experimental methods deduce the physical joint’s parameters by
isolating the joint from the rest of the structure and testing it under static or
dynamic loads [5, 6]. The removed joint is installed in the test apparatus using15

additional joints that can affect the quality of the measurement results. The test-
ing conditions such as loads, pre-loads, temperature, surface mating, position,
etc., also determine the joint’s physical characteristics [7] and are sometimes
hard to reproduce in a laboratory. As modern materials are frequently nonlin-
ear in nature, the test-obtained joint parameters might also not be applicable20

for the end use of the modeled product. Moreover, it is practically impossible to
isolate the joint in certain cases, e.g., in biomechanical systems, where we also
have to account for the elastic and nonelastic power that the muscle systems set
against the externally induced motion of the joint [8, 9, 10].
Alternatives to the pure experimental joint-parameter identification are the25

model-based methods, which are typically a combination of experimental data
and the results obtained from numerical models. The identification problem
focuses on finding such parameter values that the predicted dynamic response
coincides with that of the real system [11, 12]. The cost function is defined
in terms of an output error, which leads to a maximum-likelihood estimation.30

The equations describing the dynamic response of multibody systems are usu-
ally highly nonlinear. This is due to the geometrical nonlinearities associated
with rigid-body rotations, which makes the problem of parameter identifica-
tion particularly challenging [13]. The majority of the contributions devoted
to this subject have focused on some specific applications, such as robotics35

[14, 15, 16, 17] or biomechanical systems [18, 19, 20]. In robotics, motors are
usually placed at the joints for control and the joint parameters (stiffness, damp-
ing, . . . ) are obtained by comparing the robot dynamic model with either the
measured motion (usually at the end-effector) [16, 21] or the motor force/torque
[22, 23]. Researchers in [24] used springs to model the transmissions between40

motors and the rigid links in flexible-joint robots. This approach resulted in
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supplementary degrees of freedom in comparison to rigid body robot modeling.
A detailed joint model was used in [23], which included backlash, friction on
motor and arm side, damping and nonlinear stiffness. A frequency-domain joint
model parameter identification was also utilized, e.g. [24] used only motor-side45

measurements to obtain the system frequency response functions.
Compared to the area of robotics, relatively little attention has been paid to
joint-parameter estimation in the general area of multibody systems [25, 26, 27].
The presence of nonlinearities greatly complicates the parameter-identification
process since the linear-superposition principle becomes inapplicable and there-50

fore an explicit time integration must be performed to obtain the system’s dy-
namic response. A time-domain procedure for the parameter identification of
a nonlinear, multi-degree-of-freedom system was presented in [28]. In [13] the
authors proposed a Lie-series technique to estimate the parameters of general
multibody systems. In order to achieve a more effective and less time-consuming55

parameter-optimization process it is often desirable to linearize the equations
of motion. The researchers in [29] developed a parameter-identification scheme
for linear or linearized systems that are limited to the modeling of torsional
vibrations in mechanical systems like rotors and power trains. Researchers have
also presented a method that rewrites the equations of motion into a linear form60

with regards to the parameters that are to be identified [30, 31]. The method is
broadly used in the field of robotics for calibration and control and is therefore
intended for fast, real-time calculations. The robot dynamic model parame-
ters are identified using the standard least squares techniques by comparing the
calculated and measured joint torques, positions, velocities and accelerations65

[32, 33].
Although significant progress has been made in recent years, none of the above
studies has addressed the effect of multibody-system equilibrium-point selec-
tion on the accuracy of the parameter-identification algorithm. Therefore, in
our study, a new general model-based parameter-estimation algorithm is pro-70

posed that relies on the optimal system’s equilibrium-point selection during the
joint-parameter identification process. The method is based on minimizing the
difference between the experimentally and numerically obtained dynamic sys-
tem’s natural frequencies. The comparison of the natural frequencies is used as
they are highly sensitive to any change of the system’s parameters and can also75

be measured with a high degree of accuracy [34]. As the equations of multibody
systems are highly nonlinear, the symbolic linearization technique is applied to
extract the modal parameters. While there are a number of linearization tech-
niques used to calculate the time responses for a specific set of initial conditions
[35, 1], only limited work has been done to obtain local linearizations of multi-80

body systems at equilibrium points [36, 37]. In our paper the method presented
in [37] and upgraded in [35] is utilized because it enables the linearization of a
general multibody system at any selected equilibrium point. The basic idea of
the proposed parameter-identification procedure relies on the implementation
of an algorithm that deduces the optimal equilibrium point for the linearization85

of a given multibody system. The equilibrium point is chosen in such a way as
to minimize the interplay between different joints for the system’s natural fre-
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quencies. Using the proposed approach it is possible to localize the influence of
an individual joint’s stiffness parameters to only one selected natural frequency.
This results in an accurate and efficient procedure that makes it possible to90

exploit all the advantages of a on-line parameter estimation.
The efficiency of the proposed parameter-estimation algorithm is demonstrated
on a numerical and experimental case study, by estimating the joint-stiffness
parameters of a given mechanism. The presented case study highlights the im-
portance of a proper linearization equilibrium-point selection for a reliable and95

accurate identification of the joint parameters.

2. Equations of motion for a general multibody system

The governing equations of motion for a general multibody system are de-
rived using the embedding technique [1], where the number of equations is equal
to the number of the system’s degrees of freedom. The equations of motion for
a rigid multibody system can now be written as:

δqT
[
Mq̈ −Qe

]
= 0 , (1)

where M represents the mass matrix, Qe the vector of the external forces acting
on the system and q is the vector of the system coordinates, which consists of
dependent qd and independent coordinates qi. The virtual changes of the vector
of the system coordinates can be expressed using only the virtual changes of the
independent coordinates, as shown in [1]:

δq =

[
δqd
δqi

]
= Biδqi , Bi =

[
Cdi

I

]
. (2)

Eq. (2) can now be inserted into Eq. (1) and rewritten only in terms of the
independent coordinates:

δqTi BT
i

[
Mq̈ −Qe

]
= 0 . (3)

Since the components of the vector δqi are independent, their coefficients in
Eq. (3) must be equal to zero and this leads to a system of differential equations:

BT
i Mq̈ −BT

i Qe = 0 . (4)

By writing the equations in terms of independent coordinates we obtain:

Miq̈i = Qi , (5)

where

Mi = BT
i MBi, Qi = BT

i Qe −BT
i Mγi , γi =

[
Cd

0

]
. (6)

Kinematic joints are key components in a multibody simulation. Usually joints
are represented with idealized models which restrain the motion of the entire sys-
tem by a set of kinematic constraints [1, 38]. This kind of formulation considers
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the joints as perfect rigid elements and has the advantage for simple imple-
mentation and computational efficiency. However, physical phenomena such as
clearance, misalignment, flexibility, friction or impact can highly influence the
dynamic response of the joints and have a non negligible effect on the accuracy
of the multibody model [38].
In our study the simple revolute joint between two links is considered. For two
contacting bodies i and j the joint kinematic constraint can be written as:

Ri + Aiui
P = Rj + Ajuj

P , (7)

where Ri and Rj are the global position vectors of local body coordinate sys-
tems, ui

P and uj
P are the position vectors of the contacting point P defined

with respect to the local coordinate systems and Ai and Aj are the planar100

transformation matrices.

3. Linearization and identification of the natural frequencies

The identification of natural frequencies by means of a numerical integra-
tion followed by the Fourier transform is a mathematically complex and time-
consuming process. In contrast, this paper proposes an alternative method
using the linearization approach as presented in [35]. The method relies on the
linearization of the governing equation of motion at a specific equilibrium point.
First, the Eq. (5) is rewritten by considering all of the dependencies:

Mi(qi)q̈i −Qi(qi, q̇i, t)︸ ︷︷ ︸
h

= 0. (8)

The linearization of Eq. (8) is performed at the equilibrium point: q′i = (q̈i,0, q̇i,0, qi,0):

δh =
∂h

∂q̈ i

∣∣∣∣
q′
i

δq̈i +
∂h

∂q̇ i

∣∣∣∣
q′
i

δq̇i +
∂h

∂qi

∣∣∣∣
q′
i

δqi = 0, (9)

where δq̈i, δq̇i and δqi are the variations about q′i. Assuming Eq. (9) is homo-
geneous, it can be rewritten in the linear form as:

Mi,0δq̈i + Di,0δq̇i + Ki,0δqi = 0, (10)

where Mi,0 is the linearized mass matrix:

Mi,0 =
∂h

∂q̈i

∣∣∣∣
q′
i

, (11)

Di,0 is the linearized damping matrix:

Di,0 =
∂h

∂q̇i

∣∣∣∣
q′
i

(12)
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and Ki,0 is the linearized stiffness matrix:

Ki,0 =
∂h

∂qi

∣∣∣∣
q′
i

. (13)

The variables Mi,0, Di,0 and Ki,0 are explicit functions of both the system
parameters and the equilibrium points and yield linearizations about any equi-
librium point.
The system’s natural frequencies can be identified by neglecting the damping
Di,0 and solving the eigenvalue problem. First, Eq. (10) is rewritten without
the damping:

Mi,0δq̈i + Ki,0δqi = 0. (14)

In order to determine the eigenvalues, a solution is assumed in the form of:

δqi = Seωt, (15)

where S is the vector amplitude and ω the circular frequency. Substituting
Eq. (15) into Eq. (14), we obtain:(

Ki,0 − ω2Mi,0

)
S = 0. (16)

Eq. (16) defines a generalized eigenvalue problem, which is then used to obtain
the natural frequencies of the system.

4. Introduction of the system’s equilibrium-point selection algorithm105

into the joint-parameter identification process

The joint-identification algorithm proposed in this article consists of four
major steps that are schematically presented in Fig. 1. First, the equations for
a given multibody system are derived using the embedding technique with a set
of independent coordinates (Eq. (5)). For the purposes of the presentation a110

three-link mechanism with revolute joints is analyzed, where the stiffness in the
joint is represented by rotational springs. The stiffness of the rotational springs
will be treated as unknown joint parameters that are to be deduced using the
developed parameter-estimation procedure. Nevertheless, it should be noted
that the proposed parameter-identification procedure could be applicable to an115

arbitrary multibody system’s parameters, such as masses, moments of inertia,
damping, etc. however the focus of this research is limited to joint stiffness
parameters.
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Selected multibody system
M q=Qi i i

 

pos. set 1

pos. set 2

pos. set 3

Monte Carlo sampling process
(set of system equilibrium point ) Monte Carlo sampling process

(joints parametrs)

Obtain sensitivities for pos. set j 

Calculation of eigen frequencies for pos. set j 
(joints parametrs)

Identification of optimal position for
 joint parameters identification

Identification of joint parameters 
using optimization algorithm

Measured natural frequencies
(EMA)

par. set 1: k , k , kA,1 B,1 C,1

par. set 2: k , k , kA,2 B,2 C,2

par. set n: k , k , kA,n A,n A,n

par. set n: f , f , f , ...01,n 02,n 03,n

Linearization for
pos. set j 

..
M dq+K dq =0i,0 i i,0 i i

j j

(j) (j) (j)

kA
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B C

kB kC

(j)

(j)

(j)

 f      01

f     02

 f03  

kA kB kC

(1)r1,1
(1)r1,2

(1)r1,3

(1)r2,1
(1)r2,1

(1)r2,3

(1)r3,1
(1)r3,2

(1)r3,3

...

...

...

for each pos. set j

Figure 1: Schematic presentation of the multi-
body parameter-identification algorithm.

In the second step the algorithm for the optimal system equilibrium-point
selection is used. The algorithm is based on two successive Monte Carlo sam-
pling processes that ensure the randomness of the generated data sets. For each
equilibrium-point configuration j a linearization technique is applied and a set
of system joint parameters using a Monte Carlo sampling process is constructed.
For the given elementary case study (three-link mechanism) the matrix of the
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system’s joint parameters can be written as:

K =



kA,1 kB,1 kC,1

kA,2 kB,2 kC,2

...
...

...
kA,n kB,n kC,n

...
...

...

← n-th joint parameters set,
(17)

where the number of rows in the matrix corresponds to the size of the gener-
ated system’s joint-parameter sets. Using the linearized equations of motion
it is possible to deduce the system’s natural frequencies for a given set of the
system’s joint parameters n. The obtained natural frequencies for the selected
j-th system equilibrium point can be written in the matrix form as:

F (j) =



f
(j)
01,1 f

(j)
02,1 f

(j)
03,1 . . .

f
(j)
01,2 f

(j)
02,2 f

(j)
03,2 . . .

...
...

...
. . .

f
(j)
01,n f

(j)
02,n f

(j)
03,n . . .

...
...

...
. . .


(18)

The sensitivity of the system’s natural frequency versus a given joint-parameter
set can now be obtained by calculating the Pearson’s correlation coefficient [39]:

ρ
(j)
i,m =

cov(F (j)
i ,Km)

σF(j)
i
σKm

, j = 1, 2, 3, ..., m = 1, 2, 3, (19)

where theF (j)
i represents the i-th column of the matrixF (j) andKm is the m-th120

column of the matrixK. The variables σF(j)
i

and σKm
are the standard deviation

of the data in the vectors F (j)
i and Km, respectively. The applied linearization

technique enables efficient calculation of the natural frequencies and with this
the sensitivities for large sets of equilibrium positions using Eq. (19). Thus, by
inspecting all the equilibrium points and the obtained sensitivities, the optimal125

equilibrium point can now be deduced where the individual system’s natural
frequency is mainly influenced by only one joint parameter (Fig. 2).
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(1)r2,3

(1)r3,1
(1)r3,2

(1)r3,3

optimal system equlibrium point

Figure 2: Identification of an optimal sys-
tem equilibrium point for a multibody system.

In the third step the actual multibody system is positioned according to the
chosen optimal equilibrium point and the experimental modal analysis (EMA)
is performed. The results of the EMA are the natural frequencies and the cor-
responding mode shapes of the multibody system.
Finally, to deduce the unknown system’s joint parameters an optimization pro-
cess is performed by minimizing the discrepancy between the numerically and
experimentally obtained system’s natural frequencies:

ε =

√∑
i=1

(fi,exp. − fi,num.)2, (20)

where fi,num. is the i-th natural frequency obtained using the numerical model
and fi,exp. the i-th experimentally obtained natural frequency. For solving
the presented nonlinearly constrained optimization problem an interior point
method is used [40]:

min ε

subject to h(x) = 0,

g(x) ≤ 0,

(21)

where ε represents the optimization objective function (Eq. (20)), h(x) the
equality and g(x) the inequality of the constraint equations. In the given case
study of a three-link mechanism the unknown system joint parameters are the130

torsional stiffnesses kA, kB and kC .
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5. Case study

The analyzed case study is a three-link mechanism, where the links are
connected using revolute joints. The stiffness in the joints is modeled using
a rotational spring, whereas the damping is neglected (Fig. 3 ). The system135

parameters are given in Table 1 where the superscripted index correlates to the
given body in the system. It is assumed that the rotational stiffnesses in the
joints are not affected by the relative rotation of the springs.

y

x
kA

kB kC

 1
m

 1
l  2l 1L

 2L
 3L

 3l

 2
m

 3m
 1J  2J  3

J1j 2j 3j

Figure 3: Multibody system under investigation.

The verification study of the proposed joint-parameter identification algo-
rithm will first be performed on the numerical case study. An experimental140

case study will follow in order to demonstrate the dependency of the system’s
natural frequencies with respect to the joint parameters.

Table 1: The parameters of analyzed multibody system.

Symbol Value

m1; m2; m3 [g] 74.1; 54.3; 36.4
J1; J2; J3 [kg mm2] 15.8; 8.3; 3.8

l1; l2; l3 [mm] 6.0; 6.0; 6.2
L1; L2; L3 [mm] 60; 50; 40

kA; kB ; kC [Nm
rad ] 21.1; 13.9; 5.8

5.1. Numerical verification

To demonstrate the efficiency of the proposed joint-parameter identification
algorithm a numerical case study is performed. Although the system’s joint pa-145

rameters (e.g., the rotational stiffness) are known, it will be assumed that they
represent unknown system parameters. Thus, by knowing the actual stiffness it
will be possible to assess the accuracy of the proposed algorithm.
The essential step is to deduce the optimal system equilibrium point, on the

10



basis of which the system’s unknown joint parameters are deduced (Fig. 1).150

Therefore, a set of 1000 equilibrium points was established using a Monte Carlo
simulation algorithm. In order to obtain the sensitivities (joint parameters →
natural frequencies) a set of 1000 system joint parameters was also constructed.
The natural frequencies were then obtained for a combined 1 million system
configurations. The time required to calculate the natural frequencies for all155

of the system configurations was 80 seconds on a common laptop (i7 dual core
processor, 24 Gb Ram). Based on the set of equilibrium points it was possible
to deduce the system’s configuration where the interplay between the different
joint parameters for the given natural frequencies is minimized. In Fig. 4 two
system configurations are presented to demonstrate the importance of proper160

system equilibrium-point selection during the joint-parameter identification.
Configuration 1 is the most common configuration, where the links are posi-
tioned in a straight line, whereas Configuration 2 represents the identified opti-
mal position of the mechanism. For both configurations the calculated natural
frequencies are presented in table 2 and will be considered as known variables165

for the system. In real applications the natural frequencies would normally be
obtained using experimental modal analysis.

y

x

1 2 3j j j
0 0 0=0 =0 =0ººº

(a)

y

x
1 2 3j j j
0 0 0=44.4 =-44.9 =40.4ººº

(b)

Figure 4: Analyzed configurations of the multi-
body system; a) Configuration 1, b) Configuration 2.

Table 2: The calculated natural frequencies for both analyzed configurations.

Configuration 1 Configuration 2
f1 19.9 Hz 22.7 Hz
f2 83.1 Hz 58.5 Hz
f3 229.8 Hz 101.2 Hz

By inspecting the correlation factors (Figs. 5, 6) it is evident that the corre-
lation factors are practically the same for the first natural frequency. However,
in the cases of the second and third natural frequencies a significant change170

in the correlation factors can be observed. Configuration 1 exhibits a strong
interplay of the joint stiffness parameters for the system’s natural frequencies:
the individual natural frequency is significantly influenced by at least two joint
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stiffness parameters. However, in the case of Configuration 2 the individual
natural frequency is influenced mainly by a single joint stiffness parameter.175
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Figure 5: Interplay between the joint stiffness coefficients for the sys-
tem’s natural frequencies for Configuration 1; a) First natural fre-

quency f1, b) Second natural frequency f2, c) Third natural frequency f3.
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0.057

0.0 0.2 0.4 0.6 0.8 1.0 1.2

kC

kB

kA

Correlation factor k → f 3

(c)

Figure 6: Interplay of joint-stiffness coefficients on the system’s
natural frequencies for Configuration 2; a) First natural frequency
f1, b) Second natural frequency f2, c) Third natural frequency f3.

The same conclusions regarding the influence of joint stiffness parameters on
the system natural frequencies can be reached by examining the mode shapes
for both configurations (Figs. 7, 8). Generally a higher joint sensitivity for a
given natural frequency is exhibited as a higher deviation compared to the initial
position. In the case of our three-link mechanism the deviation is seen in the180

form of an angle change between the initial link position and the mode shape
link position. For Configuration 1 the first mode shape is mostly influenced by
the first joint. The second and third mode shapes are sensitive for both the
second and third joints but the influence of the third joint is more substantial
for the third mode shape. In the case of Configuration 2 each mode shape185

mostly exhibits changes at only one joint while keeping the initial orientation
at the other joints. This is in agreement with the correlations factors shown in
Figure 6.
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Figure 8: The first three mode shapes for Configuration 2.

By identifying the optimal equilibrium configurations it is now possible
to deduce the system’s joint parameters by using the optimization approach190

(Eq. (21)). Table 3 lists the calculated stiffness parameters for both equilib-
rium configurations. As can be seen, the stiffness parameters that were deduced
from Configuration 2 are far more accurate than the ones obtained using Con-
figuration 1. Configuration 2 can therefore be considered more appropriate for
performing the optimization process.195

The presented case study highlights the importance of a proper linearization
equilibrium-point selection and confirms that the proposed algorithm in this
paper is reliable for the multibody system parameter identification.

13



Table 3: Results of the optimization process.

kA kB kC

Reference values Value

[
Nm

rad

]
21.10 13.90 5.77

Starting estimations Value

[
Nm

rad

]
30.00 20.00 10.00

Configuration 1
Value

[
Nm

rad

]
20.08 17.59 4.79

Error [%] -4.83 26.54 -16.97

Configuration 2
Value

[
Nm

rad

]
21.2 13.6 5.82

Error [%] 0.5 -2.00 1.00

5.2. Experimental case study

Here, the actual experimental setup is used to demonstrate the effect of the200

system’s joint parameters on its natural frequencies. The system is analyzed
in both selected equilibrium points, as shown in Fig. 9. The joint stiffness was
represented by thin metal sheets of different thickness. The dimensions of the
metal sheets were set to obtain approximately the same joint stiffness as those
presented in Table 1.205

XA

k

XB

k

k

A

C
B

(a)

XA

k k

k

A
C

B

XB

(b)

Figure 9: Experimental set-up used in the vibra-
tion test; (a) Configuration 1, (b) Configuration 2.

The system’s natural frequencies were deduced based on the frequency-
response functions (FRFs) measured between the points XA/XB . The system
was excited with a random vibration profile generated by an electrodynamic
shaker. Based on the obtained FRFs it was possible to deduce the system’s
natural frequencies, as shown in Fig. 10.210

In order to demonstrate the effect of the joint parameters on the system’s nat-
ural frequencies, the stiffness of the third joint was altered by decreasing the
thickness of the metal sheet from 0.8 mm to 0.6 mm. By analyzing the system
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in Configuration 1 it is evident that a change of the stiffness in the third joint
influenced the second joint as well as the third natural frequency (Fig. 10). By215

inspecting the system in Configuration 2 it is clear that the stiffness in joint 3
mainly affected the third natural frequency and had practically no influence on
the other two natural frequencies.
Thus, it is demonstrated that the proposed system-parameter-identification al-
gorithm can be used to identify the parameters of real multibody systems and220

is not limited just to ideal numerical case studies.
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Figure 10: Frequency-response functions of the ana-
lyzed multibody system; (a) Position 1, (b) Position 2.
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6. Conclusion

A parameter-identification procedure for multibody dynamic systems has
been developed and its feasibility verified on a numerical case study and on a
real structure. The procedure identifies the unknown model parameters of a225

multibody system by minimizing the discrepancy between the numerically ob-
tained and measured system’s natural frequencies. The natural frequencies of
a real structure are usually easy to obtain requiring only minimal measuring
equipment and since the proposed method uses only discrete eigenfrequency
values it is also robust with regards to the measurement noise. The formula-230

tion employs the embedding technique to express the multibody system’s equa-
tions followed by a linearization procedure to efficiently deduce the system’s
natural frequencies. In general the input for our algorithm are the linearized
equations of motion. These can be obtained either by using the linearization
procedure proposed in our paper or by the alternative approach to rewrite the235

equations of motion in the linear form with respect to selected parameters. The
performance of the parameter-estimation algorithm was substantially improved
by incorporating the algorithm for an optimal linearization equilibrium-point
selection. The numerical case-study example highlights the accuracy of the
method and with this the importance of a proper equilibrium-point selection.240

As the optimization algorithm minimizes the cost function it is desirable that
an individual stiffness coefficient has a dominant influence on only one natural
frequency. Here, a three-link mechanism was analyzed and it was shown that
the equilibrium-point selection has a major influence on the accuracy of the
identified system’s parameters. Moreover, a real case study is presented to val-245

idate the numerical model as well as to show that parameter localization to a
particular natural frequency is not only limited to numerical case studies, but is
also inherent to real case systems. Although only stiffnes joint parameters were
identified in the presented case study the proposed study could also be used to
find other joint parameters, e.g the rigid body model could be upgraded to also250

include damping.
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[4] D. Čelič, M. Boltežar, Identification of the dynamic properties of joints
using frequencyresponse functions, Journal of Sound and Vibration 317 (1)
(2008) 158 – 174.

[5] M. P. Dolbey, R. Bell, The contact stiffness of joints at low apparent inter-265

face pressure, Annals of C.I.R.P. 19 (1971) 67–79.

[6] S. N. Shoukry, R. H. Thornley, The stiffness and damping of lubricated
joints subject to normal loads, in: Proceedings of the 25th M.T.D.R. Con-
ference, 1984, pp. 369–377.

[7] J. Wang, P. Sas, A method for identifying parameters of mechanical joints,270

Journal of Applied Mechanics 57 (1990) 337–342.

[8] A. Sporrer, M. Schönpflug, G. Beier, Human multi-body-system: Joint-
resistance modeling based on muscle properties, in: International Society
of Biomechanics, XVIIIth Congress, July 8–13, 2001.

[9] K. Ayusawa, Y. Ikegami, Y. Nakamura, Simultaneous global inverse kine-275

matics and geometric parameter identification of human skeletal model
from motion capture data, Mechanism and Machine Theory 74 (2014) 274
– 284.
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